Loss of p16Ink4a Function Rescues Cellular Senescence Induced by Telomere Dysfunction
نویسندگان
چکیده
p16(Ink4a) is a tumor suppressor and a marker for cellular senescence. Previous studies have shown that p16(Ink4a) plays an important role in the response to DNA damage signals caused by telomere dysfunction. In this study, we crossed Wrn(-/-) and p16(Ink4a-/-) mice to knock out the p16(Ink4a) function in a Wrn null background. Growth curves showed that loss of p16(Ink4a) could rescue the growth barriers that are observed in Wrn(-/-) mouse embryonic fibroblasts (MEFs). By challenging the MEFs with the global genotoxin doxorubicin, we showed that loss of p16(Ink4a) did not dramatically affect the global DNA damage response of Wrn(-/-) MEFs induced by doxorubicin. However, in response to telomere dysfunction initiated by the telomere damaging protein TRF2(ΔBΔM), loss of p16(Ink4a) could partially overcome the DNA damage response by disabling p16(Ink4a) up-regulation and reducing the accumulation of γ-H2AX that is observed in Wrn(-/-) MEFs. Furthermore, in response to TRF2(ΔBΔM) overexpression, Wrn(-/-) MEFs senesced within several passages. In contrast, p16(Ink4a-/-) and p16(Ink4a-/-)Wrn(-/-) MEFs could continuously grow and lose expression of the exogenous TRF2(ΔBΔM) in their late passages. In summary, our data suggest that in the context of telomere dysfunction, loss of p16(Ink4a) function could prevent cells from senescence. These results shed light on the anti-aging strategy through regulation of p16(Ink4a) expression.
منابع مشابه
Loss of p21 promoted tumorigenesis in the background of telomere dysfunctions induced by TRF2 and Wrn deficiency
Werner syndrome (WS) is a rare autosomal recessive progeria disease with genetic instability/cancer predisposition, thus a good model in understanding aging related carcinogenesis. Telomere dysfunction induced cellular senescence is essential in the manifestation of the WS phenotype. Our previous data has shown that p21 (encoded by Cdkn1a gene) could induce cellular senescence and suppress cell...
متن کاملOncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions
In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunction-induced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of c...
متن کاملAccelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration
Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc...
متن کاملRole of telomere in endothelial dysfunction in atherosclerosis.
PURPOSE OF REVIEW Telomeres consist of repeats of G-rich sequence at the end of chromosomes. These DNA repeats are synthesized by enzymatic activity associated with an RNA protein complex called telomerase. In most somatic cells, telomerase activity is insufficient, and telomere length decreases with increasing cell division, resulting in an irreversible cell growth arrest, termed cellular sene...
متن کاملDifferent telomere damage signaling pathways in human and mouse cells.
Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of T...
متن کامل